Chapter 11

The Inclusion-Exclusion Principle

11.1 Statement and proof of the principle

We have seen the sum principle that states that for n pairwise disjoint sets Ay, Ao, ..., A,
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What happens when the sets are not pairwise disjoint? We can still say something.
Namely, the sum )" | |A;| counts every element of [ J;_, A; at least once, and thus
even with no information about the sets we can still assert that
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However, with more information we can do better. For a concrete example, con-
sider a group of people, 10 of whom speak English, 8 speak French, and 6 speak both
languages. How many people are in the group? We can sum the number of English-
and French-speakers, getting 10 + 8 = 18. Clearly, the bilinguals were counted twice,
so we need to subtract their number, getting the final answer 18 — 6 = 12. This argu-
ment can be carried out essentially verbatim in a completely general setting, yielding
the following formula:
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|AU B| = |A| +|B| — |AN B|.

What if there are three sets? Suppose in addition to the above English and French
speakers, we have 14 German-language enthusiasts, among which 8 also speak English,
5 speak French, and 2 speak all three languages. How many people are there now?
We can reason as follows: The sum 10 + 8 4+ 14 = 32 counts the people speaking two
languages twice, so we should subtract their number, getting 32 —6 — 8 — 5 = 13.
But now the trilinguals have not been counted: They were counted three times in
the first sum, and then subtracted three times as part of the bilinguals. So the final
answer is obtained by adding their number: 13 4+ 2 = 15. In general,

|JAUBUC| =|A|+|B|+|C] = |ANB|—|ANC|—|BNC|+|AnBnNC|.
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In the case of arbitrarily many sets we obtain the inclusion-exclusion principle:
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Proof. Each element in | J]_, A; is counted exactly once on the left side of the formula.
Consider such an element a and let the number of sets A; that contain a be j. Then

a is counted
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times on the right side. But recall from our exploration of binomial coefficients that
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meaning that a is counted exactly once on the right side as well. This establishes the
inclusion-exclusion principle. O

which implies

11.2 Derangements

Given a set A = {aj,as...,a,}, we know that the number of bijections from A to
itself is n!. How many such bijections are there that map no element a € A to itself?
That is, how many bijections are there of the form f : A — A, such that f(a) # a
for all a € A. These are called derangements, or bijections with no fized points.

We can reason as follows: Let S; be the set of bijections that map the i-th element
of A to itself. We are the looking for the quantity
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By the inclusion-exclusion principle, this is

n
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Consider an intersection S;; N S;, N...NS;,. Its elements are the permutations that
map a;, , Gy, - - - , @;, to themselves. The number of such permutations is (n—k)!, hence
1S, NS, N...N S, | = (n— k). This allows expressing the number of derangements
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as
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Now, >/, (_k—l,)k is the beginning of the Maclaurin series of e~'. (No, you are not
required to know this for the exam.) This means that as n gets larger, the number
of derangements rapidly approaches n!/e. In particular, if we just pick a random
permutation of a large set, the chance that it will have no fixed points is about 1/e.

Quite remarkable, isn’t it!?
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