
Chapter 11

The Inclusion-Exclusion Principle

11.1 Statement and proof of the principle

We have seen the sum principle that states that for n pairwise disjoint sets A1, A2, . . . , An,∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai| .

What happens when the sets are not pairwise disjoint? We can still say something.
Namely, the sum

∑n
i=1 |Ai| counts every element of

⋃n
i=1 Ai at least once, and thus

even with no information about the sets we can still assert that∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ ≤
n∑

i=1

|Ai| .

However, with more information we can do better. For a concrete example, con-
sider a group of people, 10 of whom speak English, 8 speak French, and 6 speak both
languages. How many people are in the group? We can sum the number of English-
and French-speakers, getting 10 + 8 = 18. Clearly, the bilinguals were counted twice,
so we need to subtract their number, getting the final answer 18−6 = 12. This argu-
ment can be carried out essentially verbatim in a completely general setting, yielding
the following formula:

|A ∪B| = |A|+ |B| − |A ∩B|.

What if there are three sets? Suppose in addition to the above English and French
speakers, we have 14 German-language enthusiasts, among which 8 also speak English,
5 speak French, and 2 speak all three languages. How many people are there now?
We can reason as follows: The sum 10 + 8 + 14 = 32 counts the people speaking two
languages twice, so we should subtract their number, getting 32 − 6 − 8 − 5 = 13.
But now the trilinguals have not been counted: They were counted three times in
the first sum, and then subtracted three times as part of the bilinguals. So the final
answer is obtained by adding their number: 13 + 2 = 15. In general,

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.
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In the case of arbitrarily many sets we obtain the inclusion-exclusion principle:∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
n∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

|Ai1 ∩ Ai2 ∩ . . . Aik | .

Proof. Each element in
⋃n

i=1 Ai is counted exactly once on the left side of the formula.
Consider such an element a and let the number of sets Ai that contain a be j. Then
a is counted (

j

1

)
−
(

j

2

)
+ . . . + (−1)j−1

(
j

j

)
times on the right side. But recall from our exploration of binomial coefficients that

j∑
i=0

(−1)i

(
j

i

)
=

j∑
i=0

(−1)i−1

(
j

i

)
= −1 +

j∑
i=1

(−1)i−1

(
j

i

)
= 0,

which implies (
j

1

)
−
(

j

2

)
+ . . . + (−1)j−1

(
j

j

)
= 1,

meaning that a is counted exactly once on the right side as well. This establishes the
inclusion-exclusion principle.

11.2 Derangements

Given a set A = {a1, a2 . . . , an}, we know that the number of bijections from A to
itself is n!. How many such bijections are there that map no element a ∈ A to itself?
That is, how many bijections are there of the form f : A → A, such that f(a) 6= a
for all a ∈ A. These are called derangements, or bijections with no fixed points.

We can reason as follows: Let Si be the set of bijections that map the i-th element
of A to itself. We are the looking for the quantity

n!−

∣∣∣∣∣
n⋃

i=1

Si

∣∣∣∣∣ .
By the inclusion-exclusion principle, this is

n!−
n∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

|Si1 ∩ Si2 ∩ . . . ∩ Sik | .

Consider an intersection Si1 ∩ Si2 ∩ . . . ∩ Sik . Its elements are the permutations that
map ai1 , ai2 , . . . , aik to themselves. The number of such permutations is (n−k)!, hence
|Si1 ∩ Si2 ∩ . . . ∩ Sik | = (n− k)!. This allows expressing the number of derangements
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as

n!−
n∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤n

(n− k)! = n!−
n∑

k=1

(−1)k−1

(
n

k

)
(n− k)!

=
n∑

k=0

(−1)k

(
n

k

)
(n− k)!

=
n∑

k=0

(−1)k n!

k!

= n!
n∑

k=0

(−1)k

k!
.

Now,
∑n

k=0
(−1)k

k!
is the beginning of the Maclaurin series of e−1. (No, you are not

required to know this for the exam.) This means that as n gets larger, the number
of derangements rapidly approaches n!/e. In particular, if we just pick a random
permutation of a large set, the chance that it will have no fixed points is about 1/e.
Quite remarkable, isn’t it!?
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