Chapter 11

The Inclusion-Exclusion Principle

11.1 Statement and proof of the principle

We have seen the sum principle that states that for n pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{n}$,

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{i=1}^{n}\left|A_{i}\right|
$$

What happens when the sets are not pairwise disjoint? We can still say something. Namely, the sum $\sum_{i=1}^{n}\left|A_{i}\right|$ counts every element of $\bigcup_{i=1}^{n} A_{i}$ at least once, and thus even with no information about the sets we can still assert that

$$
\left|\bigcup_{i=1}^{n} A_{i}\right| \leq \sum_{i=1}^{n}\left|A_{i}\right|
$$

However, with more information we can do better. For a concrete example, consider a group of people, 10 of whom speak English, 8 speak French, and 6 speak both languages. How many people are in the group? We can sum the number of Englishand French-speakers, getting $10+8=18$. Clearly, the bilinguals were counted twice, so we need to subtract their number, getting the final answer $18-6=12$. This argument can be carried out essentially verbatim in a completely general setting, yielding the following formula:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

What if there are three sets? Suppose in addition to the above English and French speakers, we have 14 German-language enthusiasts, among which 8 also speak English, 5 speak French, and 2 speak all three languages. How many people are there now? We can reason as follows: The sum $10+8+14=32$ counts the people speaking two languages twice, so we should subtract their number, getting $32-6-8-5=13$. But now the trilinguals have not been counted: They were counted three times in the first sum, and then subtracted three times as part of the bilinguals. So the final answer is obtained by adding their number: $13+2=15$. In general,

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| .
$$

In the case of arbitrarily many sets we obtain the inclusion-exclusion principle:

$$
\left|\bigcup_{i=1}^{n} A_{i}\right|=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \ldots A_{i_{k}}\right| .
$$

Proof. Each element in $\bigcup_{i=1}^{n} A_{i}$ is counted exactly once on the left side of the formula. Consider such an element a and let the number of sets A_{i} that contain a be j. Then a is counted

$$
\binom{j}{1}-\binom{j}{2}+\ldots+(-1)^{j-1}\binom{j}{j}
$$

times on the right side. But recall from our exploration of binomial coefficients that

$$
\sum_{i=0}^{j}(-1)^{i}\binom{j}{i}=\sum_{i=0}^{j}(-1)^{i-1}\binom{j}{i}=-1+\sum_{i=1}^{j}(-1)^{i-1}\binom{j}{i}=0
$$

which implies

$$
\binom{j}{1}-\binom{j}{2}+\ldots+(-1)^{j-1}\binom{j}{j}=1,
$$

meaning that a is counted exactly once on the right side as well. This establishes the inclusion-exclusion principle.

11.2 Derangements

Given a set $A=\left\{a_{1}, a_{2} \ldots, a_{n}\right\}$, we know that the number of bijections from A to itself is $n!$. How many such bijections are there that map no element $a \in A$ to itself? That is, how many bijections are there of the form $f: A \rightarrow A$, such that $f(a) \neq a$ for all $a \in A$. These are called derangements, or bijections with no fixed points.

We can reason as follows: Let S_{i} be the set of bijections that map the i-th element of A to itself. We are the looking for the quantity

$$
n!-\left|\bigcup_{i=1}^{n} S_{i}\right|
$$

By the inclusion-exclusion principle, this is

$$
n!-\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}\left|S_{i_{1}} \cap S_{i_{2}} \cap \ldots \cap S_{i_{k}}\right| .
$$

Consider an intersection $S_{i_{1}} \cap S_{i_{2}} \cap \ldots \cap S_{i_{k}}$. Its elements are the permutations that $\operatorname{map} a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ to themselves. The number of such permutations is $(n-k)!$, hence $\left|S_{i_{1}} \cap S_{i_{2}} \cap \ldots \cap S_{i_{k}}\right|=(n-k)$!. This allows expressing the number of derangements
as

$$
\begin{aligned}
n!-\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n}(n-k)! & =n!-\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)! \\
& =\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!} \\
& =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} .
\end{aligned}
$$

Now, $\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$ is the beginning of the Maclaurin series of e^{-1}. (No, you are not required to know this for the exam.) This means that as n gets larger, the number of derangements rapidly approaches $n!/ e$. In particular, if we just pick a random permutation of a large set, the chance that it will have no fixed points is about $1 / e$. Quite remarkable, isn't it!?

